알고리즘 복잡도 (공간 복잡도)

이해하기 쉽고, 장황하지 않은 자료를 기반으로 강의를 진행합니다.
잔재미코딩 소식 공유
좀더 제약없이, IT 컨텐츠를 공유하고자, 자체 온라인 강의 사이트와 유투브 채널을 오픈하였습니다
응원해주시면, 곧 좋은 컨텐츠를 만들어서 공유하겠습니다
●  잔재미코딩 유투브 오픈 [구독해보기]

11. 참고: 공간 복잡도

  • 알고리즘 계산 복잡도는 다음 두 가지 척도로 표현될 수 있음
    • 시간 복잡도: 얼마나 빠르게 실행되는지
    • 공간 복잡도: 얼마나 많은 저장 공간이 필요한지

좋은 알고리즘은 실행 시간도 짧고, 저장 공간도 적게 쓰는 알고리즘

  • 통상 둘 다를 만족시키기는 어려움
    • 시간과 공간은 반비례적 경향이 있음
    • 최근 대용량 시스템이 보편화되면서, 공간 복잡도보다는 시간 복잡도가 우선
    • 그래서! 알고리즘은 시간 복잡도가 중심

공간 복잡도 대략적인 계산은 필요함

  • 기존 알고리즘 문제는 예전에 공간 복잡도도 고려되어야할 때 만들어진 경우가 많음
  • 그래서 기존 알고리즘 문제에 시간 복잡도뿐만 아니라, 공간 복잡도 제약 사항이 있는 경우가 있음
  • 또한, 기존 알고리즘 문제에 영향을 받아서, 면접시에도 공간 복잡도를 묻는 경우도 있음

Complexity:

  • expected worst-case time complexity: O(N)
  • expected worst-case space complexity: O(N)

현업에서 최근 빅데이터를 다룰 때는 저장 공간을 고려해서 구현을 하는 경우도 있음

1. 공간 복잡도 (Space Complexity)

  • 프로그램을 실행 및 완료하는데 필요한 저장공간의 양을 뜻함
  • 총 필요 저장 공간
    • 고정 공간 (알고리즘과 무관한 공간): 코드 저장 공간, 단순 변수 및 상수
    • 가변 공간 (알고리즘 실행과 관련있는 공간): 실행 중 동적으로 필요한 공간
    • $ S(P) = c + S_p(n) $
      • c: 고정 공간
      • $ S_p(n) $: 가변 공간

빅 오 표기법을 생각해볼 때, 고정 공간은 상수이므로 공간 복잡도는 가변 공간예 좌우됨

2. 공간 복잡도 계산

  • 공간 복잡도 계산은 알고리즘에서 실제 사용되는 저장 공간을 계산하면 됨
    • 이를 빅 오 표기법으로 표현할 수 있으면 됨

공간 복잡도 예제1

  • n! 팩토리얼 구하기
    • n! = 1 x 2 x ... x n
  • n의 값에 상관없이 변수 n, 변수 fac, 변수 index 만 필요함
  • 공간 복잡도는 O(1)

공간 복잡도 계산은 실제 알고리즘 실행시 사용되는 저장공간을 계산하면 됨

본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
In [1]:
def factorial(n):
    fac = 1
    for index in range(2, n + 1):
        fac = fac * index
    return fac
In [2]:
factorial(3)
Out[2]:
6

공간 복잡도 예제2

  • n! 팩토리얼 구하기
    • n! = 1 x 2 x ... x n
  • 재귀함수를 사용하였으므로, n에 따라, 변수 n이 n개가 만들어지게 됨
    • factorial 함수를 재귀 함수로 1까지 호출하였을 경우, n부터 1까지 스택에 쌓이게 됨
  • 공간 복잡도는 O(n)
In [3]:
def factorial(n):
    if n > 1:
        return n * factorial(n - 1)
    else:
        return 1