대표적인 자료구조: 힙
이해하기 쉽고, 장황하지 않은 자료를 기반으로 강의를 진행합니다.
잔재미코딩 소식 공유
좀더 제약없이, IT 컨텐츠를 공유하고자, 자체 온라인 강의 사이트와 유투브 채널을
오픈하였습니다
응원해주시면, 곧 좋은 컨텐츠를 만들어서 공유하겠습니다
응원해주시면, 곧 좋은 컨텐츠를 만들어서 공유하겠습니다
● 잔재미코딩 유투브 오픈
[구독해보기]
10. 대표적인 자료구조: 힙 (Heap)¶
1. 힙 (Heap) 이란?¶
- 힙: 데이터에서 최대값과 최소값을 빠르게 찾기 위해 고안된 완전 이진 트리(Complete Binary Tree)
- 완전 이진 트리: 노드를 삽입할 때 최하단 왼쪽 노드부터 차례대로 삽입하는 트리
- 힙을 사용하는 이유
- 배열에 데이터를 넣고, 최대값과 최소값을 찾으려면 O(n) 이 걸림
- 이에 반해, 힙에 데이터를 넣고, 최대값과 최소값을 찾으면, $ O(log n) $ 이 걸림
- 우선순위 큐와 같이 최대값 또는 최소값을 빠르게 찾아야 하는 자료구조 및 알고리즘 구현 등에 활용됨
2. 힙 (Heap) 구조¶
- 힙은 최대값을 구하기 위한 구조 (최대 힙, Max Heap) 와, 최소값을 구하기 위한 구조 (최소 힙, Min Heap) 로 분류할 수 있음
- 힙은 다음과 같이 두 가지 조건을 가지고 있는 자료구조임
- 각 노드의 값은 해당 노드의 자식 노드가 가진 값보다 크거나 같다. (최대 힙의 경우)
- 최소 힙의 경우는 각 노드의 값은 해당 노드의 자식 노드가 가진 값보다 크거나 작음
- 완전 이진 트리 형태를 가짐
- 각 노드의 값은 해당 노드의 자식 노드가 가진 값보다 크거나 같다. (최대 힙의 경우)
힙과 이진 탐색 트리의 공통점과 차이점¶
- 공통점: 힙과 이진 탐색 트리는 모두 이진 트리임
- 차이점:
- 힙은 각 노드의 값이 자식 노드보다 크거나 같음(Max Heap의 경우)
- 이진 탐색 트리는 왼쪽 자식 노드의 값이 가장 작고, 그 다음 부모 노드, 그 다음 오른쪽 자식 노드 값이 가장 큼
- 힙은 이진 탐색 트리의 조건인 자식 노드에서 작은 값은 왼쪽, 큰 값은 오른쪽이라는 조건은 없음
- 힙의 왼쪽 및 오른쪽 자식 노드의 값은 오른쪽이 클 수도 있고, 왼쪽이 클 수도 있음
- 이진 탐색 트리는 탐색을 위한 구조, 힙은 최대/최소값 검색을 위한 구조 중 하나로 이해하면 됨
힙에 데이터 삽입하기 - 삽입할 데이터가 힙의 데이터보다 클 경우 (Max Heap 의 예)¶
- 먼저 삽입된 데이터는 완전 이진 트리 구조에 맞추어, 최하단부 왼쪽 노드부터 채워짐
- 채워진 노드 위치에서, 부모 노드보다 값이 클 경우, 부모 노드와 위치를 바꿔주는 작업을 반복함 (swap)
힙의 데이터 삭제하기 (Max Heap 의 예)¶
- 보통 삭제는 최상단 노드 (root 노드)를 삭제하는 것이 일반적임
- 힙의 용도는 최대값 또는 최소값을 root 노드에 놓아서, 최대값과 최소값을 바로 꺼내 쓸 수 있도록 하는 것임
- 상단의 데이터 삭제시, 가장 최하단부 왼쪽에 위치한 노드 (일반적으로 가장 마지막에 추가한 노드) 를 root 노드로 이동
- root 노드의 값이 child node 보다 작을 경우, root 노드의 child node 중 가장 큰 값을 가진 노드와 root 노드 위치를 바꿔주는 작업을 반복함 (swap)
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
4. 힙 구현¶
힙과 배열¶
- 일반적으로 힙 구현시 배열 자료구조를 활용함
- 배열은 인덱스가 0번부터 시작하지만, 힙 구현의 편의를 위해, root 노드 인덱스 번호를 1로 지정하면, 구현이 좀더 수월함
- 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
- 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
- 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
In [2]:
# 예1 - 10 노드의 부모 노드 인덱스
2 // 2
Out[2]:
In [3]:
# 예1 - 15 노드의 왼쪽 자식 노드 인덱스 번호
1 * 2
Out[3]:
In [4]:
# 예1 - 15 노드의 오른쪽 자식 노드 인덱스 번호
1 * 2 + 1
Out[4]:
힙에 데이터 삽입 구현 (Max Heap 예)¶
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
가장 빠르게 풀스택 개발자가 될 수 있도록, 최적화된 로드맵을 제공합니다
- 힙 클래스 구현1
In [5]:
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(data)
In [6]:
heap = Heap(1)
heap.heap_array
Out[6]:
- 힙 클래스 구현2 - insert1
- 인덱스 번호는 1번부터 시작하도록 변경
In [7]:
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None) # 인덱스 번호는 1번부터
self.heap_array.append(data)
def insert(self, data):
if len(self.heap_array) == 1:
self.heap_array.append(data)
return True
self.heap_array.append(data)
return True
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
- 힙 클래스 구현3 - insert2
- 삽입한 노드가 부모 노드의 값보다 클 경우, 부모 노드와 삽입한 노드 위치를 바꿈
- 삽입한 노드가 루트 노드가 되거나, 부모 노드보다 값이 작거나 같을 경우까지 반복
- 특정 노드의 관련 노드 위치 알아내기
- 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
- 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
- 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
In [15]:
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None) # 인덱스 번호는 1번부터
self.heap_array.append(data)
def move_up(self, inserted_idx):
if inserted_idx <= 1:
return False
parent_idx = inserted_idx // 2
if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
return True
else:
return False
def insert(self, data):
if len(self.heap_array) == 1:
self.heap_array.append(data)
return True
self.heap_array.append(data)
inserted_idx = len(self.heap_array) - 1
while self.move_up(inserted_idx):
parent_idx = inserted_idx // 2
self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
inserted_idx = parent_idx
return True
In [17]:
heap = Heap(15)
heap.insert(10)
heap.insert(8)
heap.insert(5)
heap.insert(4)
heap.insert(20)
heap.heap_array
Out[17]:
힙에 데이터 삭제 구현 (Max Heap 예)¶
- 힙 클래스 구현4 - delete1
- 보통 삭제는 최상단 노드 (root 노드)를 삭제하는 것이 일반적임
- 힙의 용도는 최대값 또는 최소값을 root 노드에 놓아서, 최대값과 최소값을 바로 꺼내 쓸 수 있도록 하는 것임
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
가장 빠르게 풀스택 개발자가 될 수 있도록, 최적화된 로드맵을 제공합니다
In [18]:
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None) # 인덱스 번호는 1번부터
self.heap_array.append(data)
def pop(self):
if len(self.heap_array) <= 1:
return None
returned_data = self.heap_array[1]
return returned_data
- 힙 클래스 구현4 - delete2
- 상단의 데이터 삭제시, 가장 최하단부 왼쪽에 위치한 노드 (일반적으로 가장 마지막에 추가한 노드) 를 root 노드로 이동
- root 노드의 값이 child node 보다 작을 경우, root 노드의 child node 중 가장 큰 값을 가진 노드와 root 노드 위치를 바꿔주는 작업을 반복함 (swap)
- 특정 노드의 관련 노드 위치 알아내기
- 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
- 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
- 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
In [19]:
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None) # 인덱스 번호는 1번부터
self.heap_array.append(data)
def move_down(self, popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
if left_child_popped_idx >= len(self.heap_array):
return False
elif right_child_popped_idx >= len(self.heap_array):
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
else:
if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
return True
else:
return False
def pop(self):
if len(self.heap_array) <= 1:
return None
returned_data = self.heap_array[1]
self.heap_array[1] = self.heap_array[-1]
del self.heap_array[-1]
popped_idx = 1
while self.move_down(popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
if right_child_popped_idx >= len(self.heap_array):
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
poppoed_idx = left_child_popped_idx
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
poppoed_idx = left_child_popped_idx
else:
self.heap_array[popped_idx], self.heap_array[right_child_popped_idx] = self.heap_array[right_child_popped_idx], self.heap_array[popped_idx]
poppoed_idx = right_child_popped_idx
return returned_data
def move_up(self, inserted_idx):
if inserted_idx <= 1:
return False
parent_idx = inserted_idx // 2
if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
return True
else:
return False
def insert(self, data):
if len(self.heap_array) == 1:
self.heap_array.append(data)
return True
self.heap_array.append(data)
inserted_idx = len(self.heap_array) - 1
while self.move_up(inserted_idx):
parent_idx = inserted_idx // 2
self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
inserted_idx = parent_idx
return True
In [20]:
heap = Heap(15)
heap.insert(10)
heap.insert(8)
heap.insert(5)
heap.insert(4)
heap.insert(20)
heap.heap_array
Out[20]:
In [21]:
heap.pop()
Out[21]:
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
In [22]:
heap.heap_array
Out[22]:
5. 힙 (Heap) 시간 복잡도¶
- depth (트리의 높이) 를 h라고 표기한다면,
- n개의 노드를 가지는 heap 에 데이터 삽입 또는 삭제시, 최악의 경우 root 노드에서 leaf 노드까지 비교해야 하므로 $h = log_2{n} $ 에 가까우므로, 시간 복잡도는 $ O(log{n}) $
- 참고: 빅오 표기법에서 $log{n}$ 에서의 log의 밑은 10이 아니라, 2입니다.
- 한번 실행시마다, 50%의 실행할 수도 있는 명령을 제거한다는 의미. 즉 50%의 실행시간을 단축시킬 수 있다는 것을 의미함