대표적인 자료구조: 힙

이해하기 쉽고, 장황하지 않은 자료를 기반으로 강의를 진행합니다.
잔재미코딩 소식 공유
좀더 제약없이, IT 컨텐츠를 공유하고자, 자체 온라인 강의 사이트와 유투브 채널을 오픈하였습니다
응원해주시면, 곧 좋은 컨텐츠를 만들어서 공유하겠습니다
●  잔재미코딩 유투브 오픈 [구독해보기]

10. 대표적인 자료구조: 힙 (Heap)

1. 힙 (Heap) 이란?

  • 힙: 데이터에서 최대값과 최소값을 빠르게 찾기 위해 고안된 완전 이진 트리(Complete Binary Tree)
    • 완전 이진 트리: 노드를 삽입할 때 최하단 왼쪽 노드부터 차례대로 삽입하는 트리
No description has been provided for this image
  • 힙을 사용하는 이유
    • 배열에 데이터를 넣고, 최대값과 최소값을 찾으려면 O(n) 이 걸림
    • 이에 반해, 힙에 데이터를 넣고, 최대값과 최소값을 찾으면, $ O(log n) $ 이 걸림
    • 우선순위 큐와 같이 최대값 또는 최소값을 빠르게 찾아야 하는 자료구조 및 알고리즘 구현 등에 활용됨

2. 힙 (Heap) 구조

  • 힙은 최대값을 구하기 위한 구조 (최대 힙, Max Heap) 와, 최소값을 구하기 위한 구조 (최소 힙, Min Heap) 로 분류할 수 있음
  • 힙은 다음과 같이 두 가지 조건을 가지고 있는 자료구조임
    1. 각 노드의 값은 해당 노드의 자식 노드가 가진 값보다 크거나 같다. (최대 힙의 경우)
      • 최소 힙의 경우는 각 노드의 값은 해당 노드의 자식 노드가 가진 값보다 크거나 작음
    2. 완전 이진 트리 형태를 가짐

힙과 이진 탐색 트리의 공통점과 차이점

  • 공통점: 힙과 이진 탐색 트리는 모두 이진 트리임
  • 차이점:
    • 힙은 각 노드의 값이 자식 노드보다 크거나 같음(Max Heap의 경우)
    • 이진 탐색 트리는 왼쪽 자식 노드의 값이 가장 작고, 그 다음 부모 노드, 그 다음 오른쪽 자식 노드 값이 가장 큼
    • 힙은 이진 탐색 트리의 조건인 자식 노드에서 작은 값은 왼쪽, 큰 값은 오른쪽이라는 조건은 없음
      • 힙의 왼쪽 및 오른쪽 자식 노드의 값은 오른쪽이 클 수도 있고, 왼쪽이 클 수도 있음
  • 이진 탐색 트리는 탐색을 위한 구조, 힙은 최대/최소값 검색을 위한 구조 중 하나로 이해하면 됨
No description has been provided for this image

3. 힙 (Heap) 동작

  • 데이터를 힙 구조에 삽입, 삭제하는 과정을 그림을 통해 선명하게 이해하기

힙에 데이터 삽입하기 - 기본 동작

  • 힙은 완전 이진 트리이므로, 삽입할 노드는 기본적으로 왼쪽 최하단부 노드부터 채워지는 형태로 삽입
No description has been provided for this image

힙에 데이터 삽입하기 - 삽입할 데이터가 힙의 데이터보다 클 경우 (Max Heap 의 예)

  • 먼저 삽입된 데이터는 완전 이진 트리 구조에 맞추어, 최하단부 왼쪽 노드부터 채워짐
  • 채워진 노드 위치에서, 부모 노드보다 값이 클 경우, 부모 노드와 위치를 바꿔주는 작업을 반복함 (swap)
No description has been provided for this image

힙의 데이터 삭제하기 (Max Heap 의 예)

  • 보통 삭제는 최상단 노드 (root 노드)를 삭제하는 것이 일반적임
    • 힙의 용도는 최대값 또는 최소값을 root 노드에 놓아서, 최대값과 최소값을 바로 꺼내 쓸 수 있도록 하는 것임
  • 상단의 데이터 삭제시, 가장 최하단부 왼쪽에 위치한 노드 (일반적으로 가장 마지막에 추가한 노드) 를 root 노드로 이동
  • root 노드의 값이 child node 보다 작을 경우, root 노드의 child node 중 가장 큰 값을 가진 노드와 root 노드 위치를 바꿔주는 작업을 반복함 (swap)
No description has been provided for this image
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다

4. 힙 구현

힙과 배열

  • 일반적으로 힙 구현시 배열 자료구조를 활용함
  • 배열은 인덱스가 0번부터 시작하지만, 힙 구현의 편의를 위해, root 노드 인덱스 번호를 1로 지정하면, 구현이 좀더 수월함
    • 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
    • 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
    • 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
No description has been provided for this image
In [2]:
# 예1 - 10 노드의 부모 노드 인덱스
2 // 2
Out[2]:
1
In [3]:
# 예1 - 15 노드의 왼쪽 자식 노드 인덱스 번호
1 * 2
Out[3]:
2
In [4]:
# 예1 - 15 노드의 오른쪽 자식 노드 인덱스 번호
1 * 2 + 1
Out[4]:
3

힙에 데이터 삽입 구현 (Max Heap 예)

본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
가장 빠르게 풀스택 개발자가 될 수 있도록, 최적화된 로드맵을 제공합니다
  • 힙 클래스 구현1
In [5]:
class Heap:
    def __init__(self, data):
        self.heap_array = list()
        self.heap_array.append(data)
In [6]:
heap = Heap(1)
heap.heap_array
Out[6]:
[1]
  • 힙 클래스 구현2 - insert1
    • 인덱스 번호는 1번부터 시작하도록 변경
No description has been provided for this image
In [7]:
class Heap:
    def __init__(self, data):
        self.heap_array = list()
        self.heap_array.append(None) # 인덱스 번호는 1번부터
        self.heap_array.append(data)

    def insert(self, data):
        if len(self.heap_array) == 1:
            self.heap_array.append(data)
            return True
        
        self.heap_array.append(data)
        return True
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
  • 힙 클래스 구현3 - insert2
    • 삽입한 노드가 부모 노드의 값보다 클 경우, 부모 노드와 삽입한 노드 위치를 바꿈
    • 삽입한 노드가 루트 노드가 되거나, 부모 노드보다 값이 작거나 같을 경우까지 반복

  • 특정 노드의 관련 노드 위치 알아내기
    • 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
    • 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
    • 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
No description has been provided for this image
In [15]:
class Heap:
    def __init__(self, data):
        self.heap_array = list()
        self.heap_array.append(None) # 인덱스 번호는 1번부터
        self.heap_array.append(data)

    def move_up(self, inserted_idx):
        if inserted_idx <= 1:
            return False
        parent_idx = inserted_idx // 2
        if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
            return True
        else:
            return False

    def insert(self, data):
        if len(self.heap_array) == 1:
            self.heap_array.append(data)
            return True
        
        self.heap_array.append(data)
        inserted_idx = len(self.heap_array) - 1
        
        while self.move_up(inserted_idx):
            parent_idx = inserted_idx // 2
            self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
            inserted_idx = parent_idx
        return True
In [17]:
heap = Heap(15)
heap.insert(10)
heap.insert(8)
heap.insert(5)
heap.insert(4)
heap.insert(20)
heap.heap_array
Out[17]:
[None, 20, 10, 15, 5, 4, 8]

힙에 데이터 삭제 구현 (Max Heap 예)

  • 힙 클래스 구현4 - delete1
  • 보통 삭제는 최상단 노드 (root 노드)를 삭제하는 것이 일반적임
    • 힙의 용도는 최대값 또는 최소값을 root 노드에 놓아서, 최대값과 최소값을 바로 꺼내 쓸 수 있도록 하는 것임
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
가장 빠르게 풀스택 개발자가 될 수 있도록, 최적화된 로드맵을 제공합니다
In [18]:
class Heap:
    def __init__(self, data):
        self.heap_array = list()
        self.heap_array.append(None) # 인덱스 번호는 1번부터
        self.heap_array.append(data)

    def pop(self):
        if len(self.heap_array) <= 1:
            return None
        
        returned_data = self.heap_array[1]
        return returned_data
  • 힙 클래스 구현4 - delete2
    • 상단의 데이터 삭제시, 가장 최하단부 왼쪽에 위치한 노드 (일반적으로 가장 마지막에 추가한 노드) 를 root 노드로 이동
    • root 노드의 값이 child node 보다 작을 경우, root 노드의 child node 중 가장 큰 값을 가진 노드와 root 노드 위치를 바꿔주는 작업을 반복함 (swap)

  • 특정 노드의 관련 노드 위치 알아내기
    • 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
    • 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
    • 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
No description has been provided for this image
In [19]:
class Heap:
    def __init__(self, data):
        self.heap_array = list()
        self.heap_array.append(None) # 인덱스 번호는 1번부터
        self.heap_array.append(data)

    def move_down(self, popped_idx):
        left_child_popped_idx = popped_idx * 2
        right_child_popped_idx = popped_idx * 2 + 1
        if left_child_popped_idx >= len(self.heap_array):
            return False
        elif right_child_popped_idx >= len(self.heap_array):
            if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
                return True
            else:
                return False
        else:
            if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
                if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
                    return True
                else:
                    return False
            else:
                if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
                    return True
                else:
                    return False
        
    def pop(self):
        if len(self.heap_array) <= 1:
            return None
        
        returned_data = self.heap_array[1]
        self.heap_array[1] = self.heap_array[-1]
        del self.heap_array[-1]
        popped_idx = 1
        
        while self.move_down(popped_idx):
            left_child_popped_idx = popped_idx * 2
            right_child_popped_idx = popped_idx * 2 + 1
            if right_child_popped_idx >= len(self.heap_array):
                self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
                poppoed_idx = left_child_popped_idx
            else:
                if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
                    self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
                    poppoed_idx = left_child_popped_idx
                else:
                    self.heap_array[popped_idx], self.heap_array[right_child_popped_idx] = self.heap_array[right_child_popped_idx], self.heap_array[popped_idx]
                    poppoed_idx = right_child_popped_idx
        
        return returned_data
    
    
    def move_up(self, inserted_idx):
        if inserted_idx <= 1:
            return False
        parent_idx = inserted_idx // 2
        if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
            return True
        else:
            return False

    def insert(self, data):
        if len(self.heap_array) == 1:
            self.heap_array.append(data)
            return True
        
        self.heap_array.append(data)
        inserted_idx = len(self.heap_array) - 1
        
        while self.move_up(inserted_idx):
            parent_idx = inserted_idx // 2
            self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
            inserted_idx = parent_idx
        return True
In [20]:
heap = Heap(15)
heap.insert(10)
heap.insert(8)
heap.insert(5)
heap.insert(4)
heap.insert(20)
heap.heap_array
Out[20]:
[None, 20, 10, 15, 5, 4, 8]
In [21]:
heap.pop()
Out[21]:
20
본 자료와 같이 IT 기술을 잘 정리하여, 온라인 강의로 제공하고 있습니다
체계적으로 전문가 레벨까지 익힐 수 있도록 온라인 강의 로드맵을 제공합니다
In [22]:
heap.heap_array
Out[22]:
[None, 15, 10, 8, 5, 4]

5. 힙 (Heap) 시간 복잡도

  • depth (트리의 높이) 를 h라고 표기한다면,
  • n개의 노드를 가지는 heap 에 데이터 삽입 또는 삭제시, 최악의 경우 root 노드에서 leaf 노드까지 비교해야 하므로 $h = log_2{n} $ 에 가까우므로, 시간 복잡도는 $ O(log{n}) $
    • 참고: 빅오 표기법에서 $log{n}$ 에서의 log의 밑은 10이 아니라, 2입니다.
    • 한번 실행시마다, 50%의 실행할 수도 있는 명령을 제거한다는 의미. 즉 50%의 실행시간을 단축시킬 수 있다는 것을 의미함